Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(3): e0300020, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547216

RESUMO

When a context change is detected during motor learning, motor memories-internal models for executing movements within some context-may be created or existing motor memories may be activated and modified. Assigning credit to plausible causes of errors can allow for fast retrieval and activation of a motor memory, or a combination of motor memories, when the presence of such causes is detected. Features of the movement-context intrinsic to the movement dynamics, such as posture of the end effector, are often effective cues for detecting context change whereas features extrinsic to the movement dynamics, such as the colour of an object being moved, are often not. These extrinsic cues are typically not relevant to the motor task at hand and can be safely ignored by the motor system. We conducted two experiments testing if extrinsic but movement-goal relevant object-shape cues during an object-transport task can act as viable contextual cues for error assignment to the object, and the creation of new, object-shape-associated motor memories. In the first experiment we find that despite the object-shape cues, errors are primarily attributed to the hand transporting the object. In a second experiment, we find participants can execute differing movements cued by the object shape in a dual adaptation task, but the extent of adaptation is small, suggesting that movement-goal relevant object-shape properties are poor but viable cues for creating context specific motor memories.


Assuntos
Sinais (Psicologia) , Objetivos , Humanos , Movimento/fisiologia , Percepção Visual/fisiologia , Motivação , Desempenho Psicomotor/fisiologia
2.
PLoS One ; 16(7): e0253948, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34237082

RESUMO

The ability to switch between different visuomotor maps accurately and efficiently is an invaluable feature to a flexible and adaptive human motor system. This can be examined in dual adaptation paradigms where the motor system is challenged to perform under randomly switching, opposing perturbations. Typically, dual adaptation doesn't proceed unless each mapping is trained in association with a predictive cue. To investigate this, we first explored whether dual adaptation occurs under a variety of contextual cues including active follow-through movements, passive follow-through movements, active lead-in movements, and static visual cues. In the second experiment, we provided one group with a compensatory strategy about the perturbations (30° CW and 30° CCW rotations) and their relationships to each context (static visual cues). We found that active, but not passive, movement cues elicited dual adaptation. Expectedly, we didn't find evidence for dual adaptation using static visual cues, but those in the Instruction group compensated by implementing aiming strategies. Then, across all experimental conditions, we explored the extent by which dual learning is supported by both implicit and explicit mechanisms, regardless of whether they elicited dual adaptation across all the various cues. To this end, following perturbed training, participants from all experiments were asked to either use or ignore the strategy as they reached without visual feedback. This Process Dissociation Procedure teased apart the implicit and explicit contributions to dual adaptation. Critically, we didn't find evidence for implicit learning for those given instructions, suggesting that when explicit aiming strategies are implemented in dual adaptation, implicit mechanisms are likely not involved. Thus, by implementing conscious strategies, dual adaptation can be easily facilitated even in cases where learning would not occur otherwise.


Assuntos
Adaptação Fisiológica , Sinais (Psicologia) , Aprendizagem , Adaptação Ocular/fisiologia , Feminino , Humanos , Masculino , Tamanho da Amostra , Percepção Visual , Adulto Jovem
3.
PLoS One ; 13(2): e0192476, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29420650

RESUMO

Is the neural control of movements towards moving targets independent to that of static targets? In the following experiments, we used a visuomotor rotation adaptation paradigm to examine the extent to which adapting arm movements to static targets generalize to that of moving targets (i.e. pursuit or tracking). In the first and second experiments, we showed that adaptation to perturbed tracking movements generalizes to reaching movements; reach aftereffects following perturbed tracking were about half the size (≈9°) of those produced following reach training (≈ 19°). Given these findings, in the final experiment we associated opposing perturbations (-30° and +30°) with either reaching or tracking movements and presented them within the same experimental block to determine whether these contexts allow for dual adaptation. We found that the group that experienced opposing perturbations was able to reduce both reaching and tracking errors, as well as produce reach aftereffects following dual training of ≈7°, which were substantially smaller than those produced when reach training was not concurrent with tracking training. This reduction in reach aftereffects is consistent with the extent of the interference from tracking training as measured by the reach aftereffects produced when only that condition was performed. These results suggest partial, but not complete, overlap in the learning processes involved in the acquisition of tracking and reaching movements.


Assuntos
Adaptação Fisiológica , Movimento , Percepção Visual , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
4.
Exp Brain Res ; 233(12): 3433-45, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26289481

RESUMO

When reaching towards objects, the human central nervous system (CNS) can actively compensate for two different perturbations simultaneously (dual adaptation), though this does not simply occur upon presentation. Dual adaptation is made more difficult when the desired trajectories and targets are identical and hence do not cue the impending perturbation. In cases like these, the CNS requires contextual cues in order to predict the dynamics of the environment. Not all cues are effective at facilitating dual adaptation. In two experiments, we investigated the efficacy of two contextual cues that are intrinsic to the CNS, namely hand as well as body posture in concurrently adapting to two opposing visuomotor rotations. For the hand posture experiment, we also look at the role of extended training. Participants reached manually to visual targets with their unseen hand represented by a cursor that was rotated either 30° clockwise or counterclockwise, determined randomly on each reach. Each rotation was associated with a distinct hand posture (a precision or power grip, respectively) in one experiment and a distinct body rotation (10° leftward or rightward turn of the seat, respectively, while fixating straight) in the second experiment. Critically, the targets (and thus, the required cursor trajectories) were identical in both rotations. We found that how people held the tool or oriented their body while reaching is sufficient for concurrently adapting separate visuomotor mappings such that over time, reach errors significantly decrease. Extended practice did not lead to further benefits though. These findings suggest that when the required cursor movements are identical for different visuomotor mappings, dual adaptation is still possible given sufficient intrinsic contextual cues.


Assuntos
Adaptação Fisiológica/fisiologia , Atividade Motora/fisiologia , Postura/fisiologia , Desempenho Psicomotor/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Rotação , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...